
Incorporating Mobile
App Security into the
Development Lifecycle
Without Friction

https://www.guardsquare.com

Incorporating Mobile App Security into the Development Lifecycle Without Friction
www.guardsquare.com

Table of contents

The secure software development lifecycle ... 1

1. Inception... ..3

2. Requirements analysis ..4

3. Architecture & design ... 5

Mobile app privacy design ... 6

4. Development .. 7

5. Testing.. ... 9

6. Deployment .. 10

7. Steady state .. 11

Security tools for the SSDLC .. 12

Incorporating Mobile App Security into the
Development Lifecycle Without Friction

https://www.guardsquare.com/

1Incorporating Mobile App Security into the Development Lifecycle Without Friction
www.guardsquare.com

The mobile application development process is iterative. Developers often use one of the
many variants of the Agile development methodology, such as Scrum or Lean Software
Development. Teams are focused on continuous improvement, since mobile apps are
consistently updated for many reasons, including:

• Bug fixes
• New features
• Security updates
• Operating system updates
• And more.

The secure software
development lifecycle

Many organizations are starting to consider security an integral part of the development
lifecycle. They follow the concept of a secure software development lifecycle (SSDLC). The
phases of the SSDLC vary, but here’s the model we will delve into today.

INCEPTION DEVELOPMENT TESTING DEPLOYMENTREQUIREMENT
ANALYSIS

ARCHITECTURE
& DESIGN

STEADY STATE

1. 2. 3. 4. 5. 6. 7.

MAST
(Mobile app sec testing)

CODE HARDENING
DEV FEEDBACK

REAL-TIME THREAT
MONITORING

https://www.guardsquare.com/
https://www.blueprintsys.com/agile-development-101/agile-methodologies

22Incorporating Mobile App Security into the Development Lifecycle Without Friction
www.guardsquare.com

But, often within mobile app development, security
is either not considered at all, or is only incorporated
very late in the development lifecycle. In most cases,
security is reactive, only after a breach has occurred.
The reason? Many development teams are racing to
market with their apps. Being “first” can often make
or break an app publisher.

Unfortunately, there’s a perception that security can
slow mobile development teams down. The reality
is, many development teams lack security expertise.
In fact, 82% of organizations say there’s a shortage
of cybersecurity skills on their teams. Not knowing
how to incorporate security can be a top cause of
slowdowns.

Consider this: it is more expensive to find bugs
after deployment, versus finding them earlier in the
lifecycle through the quality assurance (QA) process.
Similarly, security is inherently more expensive if
organizations find vulnerabilities after deployment,
rather than incorporated into the lifecycle via security
assurance (SA). If security isn’t incorporated early and
often, major consequences could happen, such as:

• Financial loss
• IP theft
• Data loss (company or customer)
• Reputational damage
• And more.

Luckily, there are proven ways to include security
within the iterative development process. Contrary
to popular belief, secure development can still
happen on compressed timelines. As mobile teams
iterate, they go through all the phases of the SSDLC.
The cycle repeats for each feature, and security and
development teams evaluate the application each
time (although this can happen within a matter of
hours or days for updates).

This eBook will show you how and where to seamlessly
integrate security throughout the entire development
lifecycle, without having to slow app development
teams down. Let’s take a look at each phase of the
SSDLC as it applies to mobile development.

https://www.guardsquare.com/
https://www.infosecurity-magazine.com/blogs/sustaining-security-talent/

33Incorporating Mobile App Security into the Development Lifecycle Without FrictionIncorporating Mobile App Security into the Development Lifecycle Without Friction
www.guardsquare.comwww.guardsquare.com

In this first phase, the app is being conceptualized and planned. At this point, teams
need to bring security into the SDLC. Security awareness training can help developers
hone their skills. It’s important to note that not all applications require the same level of
security. Training sessions should be adjusted based on these requirements.

For example, some applications will be subject to internal, localized or industry-specific
security and compliance regulations. These applications may require enhanced security
and risk mitigation measures.

Possible regulations could include:
• Data privacy regulations (GDPR in Europe, CCPA and other state-specific

regulations in the U.S., PIPEDA in Canada, etc.)
• PSD2, PCI, or GLBA for financial apps
• HIPAA for healthcare
• SOC 2 for the organization’s internal information security
• SOX for internal financial reporting
• And many more.

In the requirements analysis step, the team digs into these types of specifics.

1. Inception

1.

https://www.guardsquare.com/
https://gdpr-info.eu/
https://oag.ca.gov/privacy/ccpa
https://www.priv.gc.ca/en/privacy-topics/privacy-laws-in-canada/02_05_d_15/
https://www.guardsquare.com/en/blog/mobile-apps-and-psd2-compliance-how-guardsquare-can-help
https://www.pcisecuritystandards.org/documents/PCI_Mobile_Payment_Acceptance_Security_Guidelines_for_Developers_v2_0.pdf
https://www.ftc.gov/tips-advice/business-center/privacy-and-security/gramm-leach-bliley-act
https://www.hhs.gov/hipaa/index.html
https://www.imperva.com/learn/data-security/soc-2-compliance/#:~:text=SOC%202%20is%20an%20auditing,when%20considering%20a%20SaaS%20provider.
https://www.investopedia.com/terms/s/sarbanesoxleyact.asp

44Incorporating Mobile App Security into the Development Lifecycle Without FrictionIncorporating Mobile App Security into the Development Lifecycle Without Friction
www.guardsquare.comwww.guardsquare.com

2. Requirements analysis

In this stage, teams come up with a
requirements, or list of what should
be included in the app. These should
include:

• Business Requirements: High-lev-
el statements of objectives, goals,
and needs for the organization.

• Stakeholder Requirements: Often
based on research, these dictate
what the user might expect from
the app.

• Solution Requirements: These are
characteristics of the application,
including how it will work for users
and meet business needs.

 ⸰ Functional: Features that will
impact how a user interacts
with the application, such as ex-
ternal user interfaces (UI) and
user experience (UX), authenti-
cation, transaction functional-
ity, and more.

 ⸰ Nonfunctional: App attributes
that aren’t directly seen by the
user, such as security, reliability,
performance, maintainability,
scalability, and usability.

Specific to security requirements, in this
phase, teams start working on threat
modeling and risk modeling. In other
words, they look at the application and
its third-party dependencies to evaluate
risk. Some teams develop their own in-

house threat models, and reuse them
for different products. Others rely on
industry standard threat modeling
frameworks, such as:

• Microsoft threat modeling frame-
works and tools.

• Trike, an open source methodology
and tool.

• OWASP’s PASTA methodology, or
Process for Attack Simulation and
Threat Analysis.

In the risk analysis and threat modeling
process, some key questions to consider
include:

• What compliance standards does
the organization need to meet, if
any?

• How will the app connect to compa-
ny servers?

• Will the app store sensitive informa-
tion from customers or the compa-
ny?

• How much valuable intellectual
property (which gives a competitive
edge) will be involved in developing
the app?

• What third party libraries or other
services does the app rely on? What
are the security risks associated
with these third-parties?

2.

https://www.guardsquare.com/
https://theappsolutions.com/blog/development/functional-vs-non-functional-requirements/
https://theappsolutions.com/blog/development/functional-vs-non-functional-requirements/
https://www.microsoft.com/en-us/securityengineering/sdl/threatmodeling
http://octotrike.org/
https://owasp.org/www-pdf-archive/AppSecEU2012_PASTA.pdf

55Incorporating Mobile App Security into the Development Lifecycle Without FrictionIncorporating Mobile App Security into the Development Lifecycle Without Friction
www.guardsquare.comwww.guardsquare.com

3. Architecture & design

As an example, let’s consider an app that’s
sharing a user’s location with friends. This
could happen in two ways:

• Broadcast location information:
The friend’s app connects if the user’s
location is close. If someone pretends
to be a user’s friend, this can be a se-
curity issue. This decision increases
the user’s risk.

• Send data to the company’s server:
The app only sends the location and
connects if two verified friends are
close to each other. This decision lim-
its the distribution of data external-
ly. However, it makes the company’s
server aware of location. This increas-
es the company’s risk.

Beyond technical decisions like these, UI
design also must consider security. For
example, a social networking app should
design features that make it clear when
users grant access to a third party. They
should also enable the user to easily re-
voke that access.

Usually, these types of conceptual deci-
sions are made by a CISO, application se-
curity team, or security architects, rather
than developers. In larger companies, se-
curity communicates standards (such as

OWASP MASVS), regulations and policies.
They detail ways to roll out policies us-
ing security checklists. The development
team’s responsibility is to decide how
they’ll conform to these requirements.

Finally, teams perform a security design
review, which includes:

• Identifying all security assets and
their lifetime within the applica-
tion. This includes encryption keys,
sensitive data, resources, files, and
more.

• Identifying the attack surface of
the application. Considerations in-
clude vulnerable code/data locations,
unprotected aspects of the communi-
cation protocol, and more.

• Creating an “attack tree.” This is a
“what if” chain of attack scenarios for
hackers attempting to gain access to
security assets.

• Assessing the application’s securi-
ty vulnerabilities. From there, the
team will recommend mitigations to
address vulnerabilities, or explicitly
sign off on accepting them. Security is
never perfect. It does come at a cost.
But, the organization must make sure
these decisions are conscious.

During this phase, the team will be focused on both the technical design and the UI for the
app. People who are doing this design should be trained in security. Most technical decisions
should consider security and user privacy. Often there’s a tradeoff between whether users or
the organization assume more risk.

3.

https://www.guardsquare.com/
https://github.com/OWASP/owasp-masvs
https://github.com/OWASP/owasp-mstg/tree/master/Checklists

66Incorporating Mobile App Security into the Development Lifecycle Without Friction
www.guardsquare.com

Gaining active consent from
users wherever possible

Making users aware of app
updates

Setting data retention and
deletion timelines

Informing users of advertising
features

Protecting children and minors

And more

Mobile app privacy
design

GSMA is a global industry organization that released standards for user privacy in mobile
applications. Designing for privacy is important for mobile applications that store sensitive
customer data, or operate in regions with strict consumer data privacy regulations.

Key considerations within GSMA’s standards include:

https://www.guardsquare.com/
https://iapp.org/media/pdf/resource_center/gsmaprivacydesignguidelinesformobileapplicationdevelopmentv1%20%281%29.pdf

77Incorporating Mobile App Security into the Development Lifecycle Without FrictionIncorporating Mobile App Security into the Development Lifecycle Without Friction
www.guardsquare.comwww.guardsquare.com

4. Development
First, organizations must prepare for the development phase by making sure secure
coding training is mandatory for all developers. During development, secure coding best
practices should be followed. Some secure coding basics, according to Carnegie Mellon’s
CERT, include:

• Validate input.
Validate input from all untrusted data sources. Proper input validation can elimi-
nate the vast majority of software vulnerabilities.

• Heed compiler warnings.
Compile code using the highest warning level available for your compiler and
eliminate warnings by modifying the code. Use static and dynamic analysis tools
to detect and eliminate additional security flaws.

• Architect and design for security policies.
Design software to implement and enforce security policies.

• Keep it simple.
Keep the design as simple and small as possible, as complex designs increase
the likelihood that errors that could lead to security issues will be made in their
implementation, configuration, and use.

• Use effective quality assurance techniques.
Good quality assurance (QA) techniques, such as fuzzing, penetration testing, and
source code audits, can help identify and eliminate vulnerabilities.

• Define security requirements.
Identify and document security requirements early in the development lifecycle
and make sure that subsequent versions are reviewed for compliance.

4.

https://www.guardsquare.com/
https://wiki.sei.cmu.edu/confluence/display/seccode/Top+10+Secure+Coding+Practices?focusedCommentId=88044413
https://wiki.sei.cmu.edu/confluence/display/seccode/Top+10+Secure+Coding+Practices?focusedCommentId=88044413

88Incorporating Mobile App Security into the Development Lifecycle Without FrictionIncorporating Mobile App Security into the Development Lifecycle Without Friction
www.guardsquare.comwww.guardsquare.com

Obfuscation:
Rendering code illegible without af-
fecting its functionality. The techniques
used to obscure code in this manner
vary considerably. They may include:

 ⸰ replacement of readable names in the
code by difficult to decipher alterna-
tives (name obfuscation)

 ⸰ modification of the logical structure of
the code to make it less predictable and
traceable (control flow obfuscation)

 ⸰ conversion of simple arithmetic and
logical expressions into complex equiv-
alents (arithmetic obfuscation).

Encryption:
Ensures the code of the application and
the data it contains cannot be accessed
while the application is at rest. The en-
crypted code is decrypted on-the-fly
when the application is executed, guar-
anteeing that it functions as intended.
To be effective, the encryption must be
applied in various layers. Essential en-
cryption techniques include:

 ⸰ string encryption
 ⸰ class encryption
 ⸰ asset encryption
 ⸰ resource encryption.

Code hardening is also an important part of the development process. Code hardening
protects Android and iOS applications and libraries from reverse-engineering and
exploitation. It is a minimally invasive process that can be automated, without slowing
the development team (or the app itself) down.

Common code hardening techniques include:

At this point, teams can also automate anti-tampering protection, or runtime application
self-protection (RASP). RASP enables Android and iOS applications to defend themselves
against analysis at runtime and live attacks. The various RASP mechanisms monitor the
integrity of the applications and the environment in which they are running. When a
threat is detected, the applications react in a pre-programmed manner. The possible
reactions range from the display of a security notification to the termination of the user
session and/or the application. In addition, RASP ensures the communication between
mobile application and server is secure.

Security processes are important to conduct continuously, since development on a mobile
app never stops. Luckily, both code hardening and RASP can be automated within the CI/
CD pipeline and applied regularly (e.g. on a nightly basis).

!

https://www.guardsquare.com/
https://www.guardsquare.com/en/mobile-application-protection/code-hardening-obfuscation-encryption#:~:text=Code%20hardening%20is%20an%20effective,both%20automated%20and%20manual%20analysis.
https://www.guardsquare.com/en/mobile-application-protection/runtime-application-self-protection-rasp
https://www.guardsquare.com/en/mobile-application-protection/runtime-application-self-protection-rasp

99Incorporating Mobile App Security into the Development Lifecycle Without FrictionIncorporating Mobile App Security into the Development Lifecycle Without Friction
www.guardsquare.comwww.guardsquare.com

5. Testing
Mobile app testing goes through every step the user might take within the app. This
process ensures that nothing is broken, for example:

• An image doesn’t load
• An external link doesn’t open
• An interaction or series of interactions cause the app to freeze

Just as teams do QA testing on their features at the end of a build, they also should do SA.
This process usually includes two major steps:

• Pentesting:
Otherwise known as penetration testing, the objective is to penetrate the applica-
tion or network security defenses to find vulnerabilities. This can either be done
internally by Red Teams or by external platforms or service providers. Pentesting
should be done both on obfuscated and unobfuscated code.

• Automated security testing:
This type of testing scans the built application for sensitive keys, strings, and more.
Two types of testing, SAST and DAST, are typically used together.

 ⸰ SAST, or Static Application Security Testing (also known as “white box testing”)
allows developers to find security vulnerabilities in the mobile app’s source
code earlier in the SDLC. It also ensures developers are confirming to coding
guidelines and standards without executing the underlying code.

 ⸰ DAST, or Dynamic Application Security Testing (also known as “black box”
testing) can find security vulnerabilities and weaknesses in a running mobile
application by employing fault injection techniques on an app. DAST can also
identify runtime problems such as authentication and server configuration
issues, and more.

Once the app has passed security testing, it’s on to deployment.

5.

https://www.guardsquare.com/
https://www.softwaresecured.com/what-do-sast-dast-iast-and-rasp-mean-to-developers/

1010Incorporating Mobile App Security into the Development Lifecycle Without Friction
www.guardsquare.com

Here, most of the security work will be related to the
server side. For most apps, which combine mobile apps
and cloud services, there are two deployments going on.

• Deploying the app to the app store:
One of the most important security considerations
in this phase is keeping the developer’s code sign-
ing certificate safe. That way no one can pretend to
be that developer.

• Deploying to the server:
Security in this phase involves ensuring that the
server system is properly configured and patched,
and that server passwords kept safe. Misconfigured
cloud servers can expose sensitive data and leave
back doors open to potential attacks.

In the deployment phase, developers submit the app
(whether net-new or an update) to the app store.
The app must comply with operating system-level
requirements that are designed to protect the end
user. Both Apple and Google make their policies for
developers public, as it is in each marketplace’s best
interest to ensure the integrity of the apps within it.

6. Deployment

6.

https://www.guardsquare.com/
https://developer.apple.com/app-store/review/guidelines/
https://play.google.com/about/developer-content-policy/

1111Incorporating Mobile App Security into the Development Lifecycle Without FrictionIncorporating Mobile App Security into the Development Lifecycle Without Friction
www.guardsquare.comwww.guardsquare.com

7. Steady state

Just because an application has been published to an app marketplace and downloaded
by the user doesn’t mean the development process stops. New app updates and security
patches should be a regular part of the application lifecycle. This is a process called patch
and configuration management. In addition, as new operating system versions emerge,
apps should be updated accordingly.

After an Android or iOS app is released, security teams and developers often lack visibility
into the most common attack vectors and vulnerable parts of their code. Real-time
threat monitoring can help detect threats to both the app and environment. These can
include common tactics used by hackers to weaken an app’s or environment’s security,
such as jailbreaking, rooting or hooking. Threat monitoring can also identify suspicious
users. From there, teams can adapt their security configurations to protect apps against
suspicious activity and users.

Finally, more security assurance testing should be applied at this stage to detect further
points of vulnerability in the app. From there, teams should create strategies to respond
to incidents (i.e. incident response plans) or potential points of vulnerability. This should
involve increasing layered mobile application security defenses (using a combination of
code hardening, RASP, and real-time threat monitoring).

7.

https://www.guardsquare.com/
https://www.guardsquare.com/en/products/threatcast
https://www.guardsquare.com/en/products/threatcast

12Incorporating Mobile App Security into the Development Lifecycle Without Friction
www.guardsquare.com

Security tools for the
SSDLC

Tactically speaking, even resource-strapped teams
can make security frictionless across the entire
development lifecycle – if they have the right tools
integrated into their CI/CD pipeline. These tools
can speed up the process of integrating security, so
teams do not have to sacrifice security for time-to-
market.

Here are just a few of the technologies that can be
applied to different phases of the SSDLC.

Development
• Secure coding assistants: These solutions help

developers and app security specialists build their
secure coding skills, get real-time advice when
they need it, and monitor skills development over
time.

• Code hardening: Code hardening protects
APKs/IPAs and SDKs for Android and iOS apps
from reverse-engineering and hacking by using
obfuscation and encryption. These techniques
make the code mainly illegible and inaccessible
to hackers. Hardened code is resistant to both
automated and manual analysis.

• Runtime application self-protection (RASP):
RASP protects the application against analysis at
runtime and live attacks. When a threat is detected,
the application reacts in a pre-programmed
manner, such as displaying a security notification
or terminating a user session. RASP and code
hardening are complementary approaches.

Testing
• Mobile application security testing (MAST): These tools help teams that may lack

the security resources or skills test their mobile applications to find and fix security
vulnerabilities on the client-side, server-side and within third-party libraries.

• Pentesting tools: While much of the pentesting process is manual, a pentester may rely
on disassemblers or hooking frameworks to try to circumvent the app’s defenses.

https://www.guardsquare.com/

13Incorporating Mobile App Security into the Development Lifecycle Without FrictionIncorporating Mobile App Security into the Development Lifecycle Without Friction
www.guardsquare.comwww.guardsquare.com

Steady State
• Real-time threat monitoring: After an app is released, security teams often lack visibility

into the most common attack vectors and vulnerable parts of their code until it’s too late.
Monitoring threats in real time can help teams adapt their security configurations and
protect apps against suspicious activity and malicious users.

• User-facing tools: For organizations that rely on mobile devices, there are end user-
facing security tools that aren’t necessarily a part of the development lifecycle, but can
protect against potential threats. These include, but are not limited to:

 ⸰ Mobile application management (MAM): These software tools and services provision
and control access to internally developed and commercially available mobile
applications. These can be useful within organizations that follow bring your own
device (BYOD) policies at work.

 ⸰ Mobile device security solutions: These solutions protect employees’ devices
themselves when they’re running on corporate networks, and can include (but are
not limited to):

Endpoint security: monitors files and processes on devices that are connected to
a network, scanning for malicious behavior.
Email security: detects, blocks and remediates threats to email, preventing data
loss via mobile device.
Secure gateways: cloud security that operates at the DNS and IP layer, to prevent
phishing, malware, ransomware and more.
Cloud security access broker (CASB): a gateway between on-premises
infrastructure and cloud applications.

A combination of the right knowledge and tools can help mobile app development and security
teams apply the security best-practices across every iteration in their development lifecycle.

© 2020 Guardsquare - All rights reserved

Want to find out more about integrating
security without slowing down? Learn more >

https://www.guardsquare.com/
https://www.guardsquare.com
http://www.guardsquare.com
http://www.guardsquare.com
http://www.guardsquare.com

